Evidenz im Fokus

Zusammenfassung der Veröffentlichung Douglass NP, et al. *Arthroscopy* (2017)*

Pflegekräften seit über 150 Jahren unterstützend zur Seite.

Auswirkungen von Ankerdesign und Knochendichte auf zyklische Belastungen und Ausrissfestigkeitseigenschaften von All-Suture-Ankern (ASA)

Bezüglich der ASA-Leistung bestehen große Unterschiede zwischen den Ankertypen und Testblockdichten

Studiendesign

- Biomechanische Studie zur Bewertung des Displacements bei zyklischer Belastung, der Ausrissfestigkeit und des endgültigen Versagensmodus mehrerer ASA-Typen
 - Q-FIX° 1.8; SUTUREFIX° ULTRA 1.7; JuggerKnot™ (Zimmer Biomet) 1.45 (#1 Faden), 1.45 (#2 Faden), 2.9; Y-Knot™ Flex (ConMed Linvatec) 1.3, 1.8; Iconix™ (Stryker) 1, 2, 25, 3
- Die Anker wurden in synthetischen Testblöcken bei 20 und 30 Pfund pro Kubikfuß (PCF) zur Nachahmung der Eigenschaften der Spongiosa von Acetabulum und Glenoid getestet; der BIORAPTOR° 2.3 PEEK-Anker wurde als Kontrolle ohne All-Suture-Funktion verwendet

Wichtigste Ergebnisse

- Alle ASA-Typen zeigen eine bessere Fixierung im synthetischen Knochen mit höherer Dichte
- Der Q-Fix 1.8 schnitt jedoch beim Displacement besser ab als alle Anker und wies maximale Ausrissfestigkeiten auf, die mit den höchsten Werten der anderen getesteten Anker vergleichbar sind

Maximales Displacement in Zyklus 200

Der Q-Fix 1.8 zeigte bedeutend weniger maximales Displacement als alle anderen ASA-Typen bei Testblöcken mit einer Dichte von 20 pcf ($p \le 0,001$) und 30 pcf ($p \le 0,025$)

Maximales Displacement in Zyklus 400 und post-zyklisches Displacement

Bei 20-pcf-Testblöcken zeigte der Q-Fix 1.8 bedeutend weniger maximales Displacement und post-zyklisches Displacement im Vergleich zu allen Ankern (p \leq 0,002)

Bei 30-pcf-Testblöcken zeigte der Q-Fix 1.8 bedeutend weniger maximales Displacement (p \leq 0,013) als alle anderen ASA-Typen, mit Ausnahme des Iconix 25, und erheblich weniger (p \leq 0,016) postzyklisches Displacement im Vergleich zu allen Ankern, mit Ausnahme des Iconix 25

Maximale Belastung und Displacement bei maximaler Belastung

Bei 20-pcf- und 30-pcf-Testblöcken wies der Iconix 25 die höchste maximale Belastung auf (196 N bzw. 307,1 N)

Bei 20-pcf-Testblöcken zeigte der Q-Fix 1.8 bedeutend weniger Displacement bei maximaler Belastung im Vergleich zu allen Ankern (p \leq 0,002); und bei 30 pcf erheblich weniger (p \leq 0,009) als die meisten ASA-Typen, mit Ausnahme von SUTUREFIX ULTRA 1.7, JuggerKnot 1.45 (#2 Faden) und Iconix 2

Fazit

Bei der Leistung der ASA-Typen bestehen je nach Ankerdesign und Knochendichte große Unterschiede, wobei die bessere Fixierung bei synthetischem Knochen mit höherer Dichte beobachtet wird. Der mit dem Q-Fix 1.8 festgestellte nennenswerte Leistungsunterschied könnte mit seinem einzigartigen aktiven Setzmechanismus zusammenhängen.

Studienzitat

*Douglass NP, Behn AW, Safran MR. Cyclic and Load to Failure Properties of All-Suture Anchors in Synthetic Acetabular and Glenoid Cancellous Bone. Arthroscopy. 2017;33:977-985.

Wir stehen Medizinern und Pflegenden seit über 150 Jahren unterstützend zur Seite.