Smith-Nephew

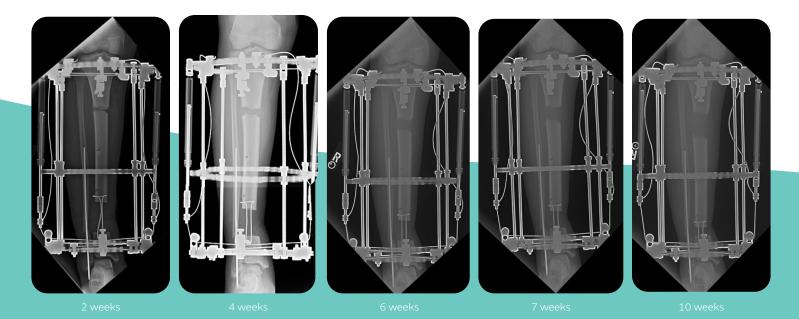
Balanced Cable Transport with Circular Fixation can be used to treat bone defects, including those greater than 10cm¹, in the presence of compromised soft tissue², while the patient continues to weight-bear as tolerated.³ The new Transport Strut is designed to provide a stable and efficient motor for the Cable performing the bone transport.

- Transport Strut connects to the Ring using an ILIZAROV Bolt. Raising the height of connection with ILIZAROV componentry extends the working length of the frame
- Long Transport Strut range is 0-105mm
- Medium Transport Strut range is 0-50mm
- Patient makes 0.25mm adjustments per surgeon-recommended schedule
- The Ring at the transport segment is not fixed to bone no pins or wires drag through the soft tissue
- DC Counters can be applied at the middle Ring to achieve lengthening during transport
- The Cable exits the intramedullary canal of the transport segment and enters the IM canal of the docking site
- The 'balance' of the Cable is achieved by directing it around a Fulcrum Pin in the docking segment
- The frame on the docking site can be converted to a TSF° to achieve perfect docking

The ILIZAROV Cable 1.8mm x 1200mm

- The Cable is a braided multifilament 316LVM Stainless Steel configuration
- Seven bundles with 19 fibers in each bundle
- Each fiber is 12µm
- Total 133 fibers
- Turns corners and does not kink
- Exceptional strength in construct testing to 400lbf no structural compromise of the Cable was observed⁴

Parts List for BCT Technique


71970663	ILIZAROV Pulley 20mm (pair)
71970659	ILIZAROV Pulley 40mm (pair)
71970660	ILIZAROV Pulley 60mm (pair)
71970661	Cable 1.8mm x 1200mm
71935755	Long Transport Strut
71935756	Medium Transport Strut
71111579	Hewson Suture Retriever

Case example of bone transport using Balanced Cable Transport with Circular Fixation

Images used with permission of Stephen M. Quinnan, MD

Benefits of Balanced Cable Transport include -

- Ability to regenerate bone in defects greater than 10cm¹
- Prevention of the scarring and pain that comes from wires and pins dragging through skin¹
- Ability to transport beneath rotational flaps, free flaps and marginal soft tissue²
- Reduced pin cellulitis due to fewer pin sites
- Facilitates multi-focal transport¹
- Facilitates conversion to internal fixation when desired¹
- Transport of small bone segments is facilitated by the 1.8mm Cable
- Transport into a very small bone segment, or transport into the talus or calcaneous for fusion, is facilitated by the 1.8mm Cable and ILIZAROV[™] Wire fixation

Watch Dr Quinnan perform a tandem trifocal bone transport using Circular Fixation and BCT https://www.smith-nephew.com/education

Click here to access 19063 71081173 ILIZAROV Balanced Cable Transport with Circular Fixation Surgical Technique

Smith & Nephew, Inc. 1450 Brooks Road Memphis, Tennessee 38116 USA www.smith-nephew.com ILIZAROV is a trademark of MedicalPlastic srl. °Trademark of Smith+Nephew All Trademarks acknowledged ©2021 Smith & Nephew, Inc. 29160 V1 03/21

References

1. Quinnan, SM and Lawrie, C. Optimizing Bone Defect Reconstruction – Balanced Cable Transport with Circular External Fixation. J Orthop Trauma 2017; 31: e347-e355. 2. Paley D., Maar D.C. Ilizarov bone transport treatment for tibial defects. J Orthop Trauma. 2000; 14(2): 76–85. 3. Ilizarov, S., & Rozbruch, S. R. (2007). Limb Lengthening and Reconstruction Surgery. New York: Informa Healthcare USA Inc. 4. Mechanical Integrity of Balanced Cable Bone Transport with Circular Fixation. Smith+Nephew ORR-20-122.