Evidence in focus

A systematic literature review and meta-analysis

Adults

High treatment success rate with the TAYLOR SPATIAL FRAME in adults

Supporting healthcare professionals

Purpose

To systematically evaluate the available evidence to determine the overall treatment success rate of TAYLOR SPATIAL FRAME° (TSF) in adults with acute trauma, non-unions/mal-unions and deformities.

Background

TSF is an external device for limb correction, lengthening and/or straightening, with a long history of clinical use:

ZU More than 20 years of clinical use

XOO More than 200 publications detailing the use of TSF in adults and children

Methods

Literature search

A search for clinically relevant results was conducted using Embase and PubMed across three indications (September 6, 2018):

Study suitability

Abstracts were analysed to determine study relevance. Additional studies were identified from other sources, such as by reviewing reference lists. To be considered eligible, a study had to fulfil the following criteria:

Inclusion criteria:

- Published from 2008 onwards in a peer-reviewed journal
- English language publication
- Adult population
- Proportion of successful cases identifiable in study

Exclusion criteria:

- Single case report
- Off-label product use

Only studies with >10 patients in the TAYLOR SPATIAL FRAME° treatment group were included in the meta-analyses (Figure 1). Studies with 2-10 patients are reported in the Appendices.

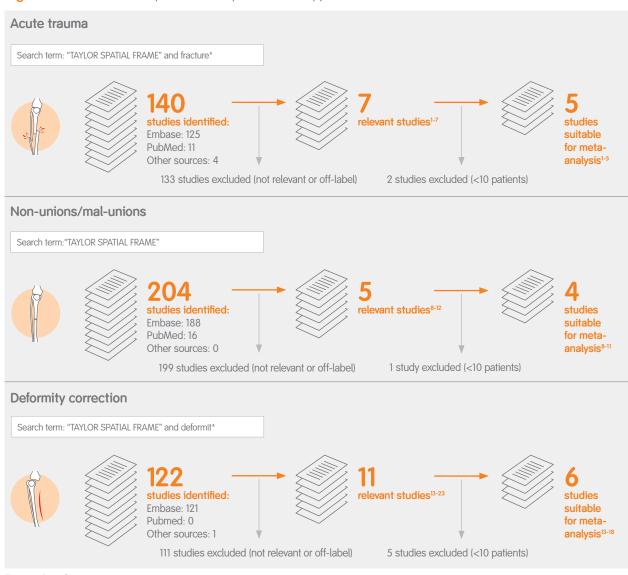


Figure 1. Search strategy

Meta-analyses

The results of each suitable study were analysed to determine the proportion of patients treated with TSF who successfully achieved the treatment goal.

The goals used to indicate treatment success were:

- Consolidation in patients with acute trauma
- Bony union in patients with mal-unions/non-unions
- Deformity correction

Meta-analyses were then conducted to determine the overall success rate of TSF per indication.

Results

Total number of studies meeting the inclusion criteria with **≥10 patients**

Combined treatment success

Across all three indications in adult patients, the meta-analyses demonstrated consistently high treatment success rates (Figure 2).

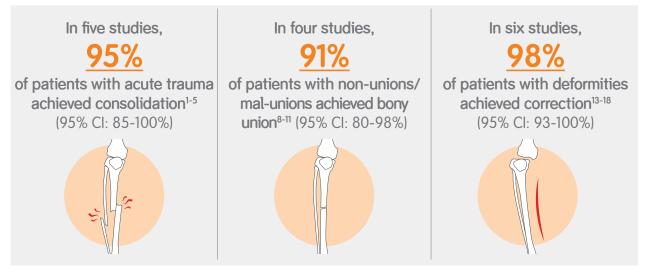


Figure 2. Combined treatment success in adult patients treated with TSF.

Full details of studies included in the meta-analysis are included in the Appendices.

Conclusion

The TAYLOR SPATIAL FRAME° has a long history of clinical use and has been reported in more than 200 peerreviewed publications. These meta-analyses demonstrate consistently high success rates in adult patients for the treatment of acute trauma, mal-unions/non-unions and deformities.

Indication

Appendix 1. Literature review and meta-analysis in acute trauma

Table 1. Characteristics of relevant studies.

Level I: Level II: Prospective, comparative Level III: Retrospective, comparative Level IV: Case series n

	n≥10; i	included in meta-a	nalysis			
Ahearn et al, 2014 ¹		21 Mean: 44* Range: 17-78		Unstable bicondylar tibial plateau fractures		
Menakaya et al, 2014 ²		37	Mean: 45* Range: NR*	Various		
O'Neill et al, 2016 ³		15 fractures	Mean: 39* Range: 16-79*	Various		
Rampurada et al, 2008 ⁴		26	Mean: 40 Range: 22-59	Tibial plateau and pilon fractures		
Sala et al, 2017 ⁵		20	Mean: 37 Range: 11-72	Open supracondylar- intracondylar femoral fractures		
	n<10; nc	ot included in meta	-analysis			
Lahoti et al, 2013 ⁶		7	Mean: 38 Range: 15-70 ⁺	Various		
Sharma and Nunn, 2013 ⁷		2	Mean: 54 Range: 48-60	Open tibial fractures		

Age (years)

Forest plot for consolidation in acute trauma

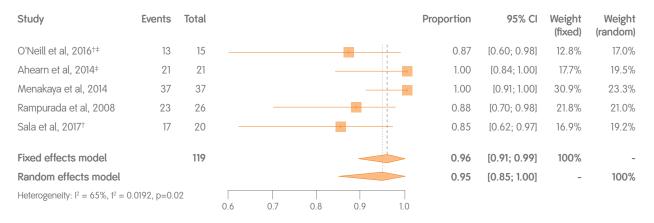


Figure 3. Proportional meta-analysis of studies (with ≥10 patients) assessing the use of TSF for acute trauma

* Mean age and range of overall patient population.

⁺ Data for adults and children not separated but mean age >18 years.

[‡] Data shown is for number of fractures successfully treated.

Abbreviations

CI = confidence interval; NR = not reported

Table 2. Characteristics of relevant studies.

Study, year Level I: Randomised controlled trials Level II: Prospective, comparative Level III: Retrospective, comparative	Level IV: Case series	c	Age (years)	Indication					
	n≥10; included in meta-analysis								
Arvensen et al, 2017 ⁸		37	Mean: 50 Range: NR	Deformities associated with distal tibial non-unions					
Khunda et al, 2016 ⁹		40	Mean: 40 Range: 9-69*	Non-unions					
Napora et al, 2017 ¹⁰		75	Mean: 46 Range: NR [†]	Infected posttraumatic non- unions of the tibia					
Rozbruch et al, 2008 ¹¹		38	Mean: 43 Range: 8-72*	Tibial non-unions					
n<10; not included in meta-analysis									
Schoenleber & Hutson, 2015 ¹²		5	Mean: 38 ⁺ Range 22-51 ⁺	Non-unions/mal-unions					

Forest plot for bony union in mal-unions/non-unions

Study	Events	Total					Proportion	95% CI	Weight (fixed)	Weight (random)
Arvesen et al, 2017	35	37					0.95	[0.82; 0.99]	19.5%	24.0%
Khunda et al, 2016*	39	40				_	0.98	[0.87; 1.00]	21.1%	24.4%
Rozbruch et al, 2008*	27	38		-			0.71	[0.54; 0.85]	20.1%	24.1%
Napora et al, 2017	70	75					0.93	[0.85; 0.98]	39.3%	27.5%
						1				
Fixed effects model		190				\rightarrow	0.91	[0.87; 0.95]	100%	-
Random effects model							0.91	[0.80; 0.98]	-	100%
Heterogeneity: $I^2 = 78\%$, $t^2 = 0$	0.0196, p=0.0)1	0.6	0.7	0.8	0.9				

Figure 4. Proportional meta-analysis of studies (with ≥10 patients) assessing the use of TSF for non-unions or mal-unions

* Data for adults and children not separated but mean age >18 years.

⁺ Mean age of overall patient population.

Abbreviations

CI = confidence interval; NR = not reported

Appendix 3. Literature review and meta-analysis in deformity correction

Table 3. Characteristics of relevant studies.

Study, year	Level I: Randomised controlled trials Level II: Prospective, comparative	Level III: Retrospective, comparative	Level IV: Case series	n Age (years) Indication		Indication				
n≥10; included in meta-analysis										
Ashfaq et al, 2012 ¹³	et al, 2012 ¹³ 57* Mean: 39 Range: 21-72 Proximal tibia varus		Proximal tibia varus							
Horn et al, 2011 ¹⁴				52	Mean: 44 Range 18-79	Various				
Nakase et al, 2009 ¹⁵				10	Mean: 29 Range: 10-71†	Various				
Rozbruch et al, 2010 ¹⁶				102 (122 tibiae)	Mean: 39 Range: 5-72†	Various				
Sokucu et al, 2013 ¹⁷				37 (50 limbs)	Mean: 23 Range: 10-58†	Various deformities around the knee				
Thiryayi et al, 2010 ¹⁸				10	Mean: 59 Range: 48-71	Various				
		n<	:10; not i	ncluded in meta-an	alysis					
Manggala et al, 2017 ¹⁹				7	Mean: 43 Range: 18-63	Foot and ankle deformities				
Baumgartner and Weber, 2017 ²⁰				6	Mean: NR Range: NR	Post-infectious bony malalignments				
Docquier et al, 2008 ²¹				2	Mean: 27 Range 24-31	Various				
Robinson et al, 2011 ²²	pinson et al, 2011 ²²			9	Mean: 49 Range: 37-59	OA deformities				
Tawari et al, 2018 ²³				2	Mean: 64 Range: 63-64	Tibial deformities				

Forest plot for deformity correction

Study	Events	Total		Proportion	95% CI	Weight
, Sokucu et al, 2013†	50	50		1.00	[0.93; 1.00]	19.4%
Ashfaq et al, 2012‡	49	57		0.86	[0.74; 0.94]	20.1%
Horn et al, 2011	50	52		0.96	[0.87; 1.00]	19.6%
Rozbruch et al, 2010 ⁺	101	102		0.99	[0.95; 1.00]	23.0%
Thiryayi et al, 2010 ⁺	10	10		1.00	[0.69; 1.00]	8.9%
Nakase et al, 2009 ⁺	10	10		1.00	[0.69; 1.00]	8.9%
Random effects model		281		0.98	[0.93; 1.00]	100%
Heterogeneity: $I^2 = 66\%$, $t^2 = 0.0112$	2, p=0.01		0.70 0.75 0.80 0.85 0.90 0.95 1.0			

Figure 5. Proportional meta-analysis of studies (with \geq 10 patients) assessing the use of TSF for deformity correction in adults * Two n values are given in this study. n=55 is described in the Materials & Methods. n=57 is calculated from treatment success in the results section and has therefore been used in the meta-analysis.

⁺ Data for adults and children not separated but mean age >18 years.

[±] Data reported as number of limbs rather than patients.

Abbreviations

CI = confidence interval; NR = not reported; OA = osteoarthritis

References

- 1. Ahearn N, Oppy A, Halliday R, et al. The outcome following fixation of bicondylar tibial plateau fractures. Bone Joint J. 2014;96-B(7):956-962.
- 2. Menakaya C, Rigby A, Hadland Y, Barron E, Sharma H. Fracture healing following high energy tibial trauma: litzarov versus Taylor Spatial Frame. Ann R Coll Surg Engl. 2014;96(2):106-110.
- 3. O'Neill B, Fox C, Molloy A, O'hEireamhoin S, Moore D. The use of circular external fixators in the management of lower limb trauma in Dublin: a single surgeon's 20-year experience. Ir J Med Sci. 2016;185(1):133-138.
- 4. Rampurada A, Madan S, Tadross T. Treatment of complex tibial plateau and distal tibial fractures with Taylor spatial frame: experience in a district general hospital. Eur J Orthop Surg Traumatol. 2008;18:521-524.
- Sala F, Thabet A, Capitani P, Bove F, Abdelgawad A, Lovisetti G. Open supracondylar-intercondylar fractures of the femur treatment with taylor spatial frame. J Orthop Trauma. 2017;31(10):546-553.
- Lahoti O, Findlay I, Shetty S, Abhishetty N. Intentional deformation and closure of soft tissue defect in open tibial fractures with Taylor spatial frame: 'sat nav' technique. J Orthop Trauma. 2013;27(8):451-456.
- 7. Sharma H, Nunn T. Conversion of open tibial IIIb to IIIa fractures using intentional temporary deformation and the Taylor Spatial Frame. Strategies Trauma Limb Reconstr. 2013;8(2):133-140.
- Arvesen J, Watson J, Israel H. Effectiveness of treatment for distal tibial nonunions with associated complex deformities using a hexapod external fixator. J Orthop Trauma. 2017;31(2):e43-e48.
- 9. Khunda A, Al-Maiyah M, Eardley W, Montgomery R. The management of tibial fracture non-union using the Taylor Spatial Frame. J Orthop. 2016;13(4):360-363.
- 10. Napora J, Weinberg D, Eagle B, Kaufman B, Sontich J. Hexapod frame stacked transport for tibial infected nonunions with bone loss: analysis of use of adjunctive stability. J Orthop Trauma. 2017;31(7):393-399.
- 11. Rozbruch S, Pugsley J, Fragomen A, Ilizarov S. Repair of tibial nonunions and bone defects with the Taylor Spatial Frame. J Orthop Trauma. 2008;22(2):88-95.
- 12. Schoenleber S, Hutson J. Treatment of hypertrophic distal tibia nonunion and early malunion with callus distraction. Foot Ankle Int. 2015;36(4):400-407.
- 13. Ashfaq K, Fragomen A, Nguyen J, Rozbruch S. Correction of proximal tibia varus with external fixation. J Knee Surg. 2012;25(5):375-384.
- 14. Horn D, Fragomen A, Rozbruch S. Supramalleolar osteotomy using circular external fixation with six-axis deformity correction of the distal tibia. Foot Ankle Int. 2011;32(10):986-993.
- 15. Nakase T, Kitano M, Kawai H, et al. Distraction osteogenesis for correction of three-dimensional deformities with shortening of lower limbs by Taylor Spatial Frame. Arch Orthop Trauma Surg. 2009;129(9):1197-1201.
- 16. Rozbruch S, Segal K, Ilizarov S, Fragomen A, Ilizarov G. Does the Taylor Spatial Frame accurately correct tibial deformities? Clin Orthop Relat Res. 2010;468(5):1352-1361.
- 17. Sokucu S, Karakoyun O, Arikan Y, Kucukkaya M, Kabukcuoglu Y. Efficacy of the Taylor spatial frame in the treatment of deformities around the knee. Acta Orthop Traumatol Turc. 2013;47(2):86-90.
- 18. Thiryayi W, Naqui Z, Khan S. Use of the Taylor spatial frame in compression arthrodesis of the ankle: a study of 10 cases. J Foot Ankle Surg. 2010;49(2):182-187.
- 19. Manggala Y, Angthong C, Primadhi A, Kungwan S. The deformity correction and fixator-assisted treatment using Ilizarov versus Taylor spatial frame in the foot and ankle. Orthop Rev (Pavia). 2018;9(4):114-117.
- 20. Baumgartner H, Weber A. Segmental bone transport and deformity correction in patients with osteomyelitis using the Taylor spatial frame (TSF). Archives of Orthopaedic and Trauma Surgery. 2017;137(11):1602.
- 21. Docquier P, Rodriguez D, Mousny M. Three-dimensional correction of complex leg deformities using a software assisted external fixator. Acta Orthop Belg. 2008;74(6):816-822.
- 22. Robinson P, Papanna M, Somanchi B, Khan S. High tibial osteotomy in medial compartment osteoarthritis and varus deformity using the Taylor spatial frame: early results. Strat Traum Limb Recon. 2011;6(3):137-145.
- 23. Tawari G, Maheshwari R, Madan S. Extra-articular deformity correction using Taylor spatial frame prior to total knee arthroplasty. Strategies Trauma Limb Reconstr. 2018;13(3):179-184.