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Introduction 
While literature reports good outcomes for many current knee 
systems,1 clinical scores do not necessarily reflect patient 
satisfaction, with up to 20% of knee patients dissatisfied with  
their knee replacement.2, 3 While this dissatisfaction could be 
attributed to abnormal motion, such as paradoxical motion  
and AP instability,4 today’s active patients simply expect more  
out of their knee replacements than ever before. These 
expectations are not being met by the current generation of  
knee replacement designs. 

To replicate normal knee function, Smith & Nephew conducted  
in-depth analyses of the geometry, kinetics, kinematics and 
ligament behavior of the normal knee and conventional TKA 
systems. These analyses created a better understanding of  
how the normal knee works and the limitations inherent in  
current knee designs. The knowledge gained through this 
research fueled the creation of a knee system designed to 
address those limitations. 

The JOURNEY BCS Bi-Cruciate Stabilized Knee System successfully 
replicates both the PCL and ACL function, promotes recovery of 
normal muscle activity, accommodates deep flexion, includes 
normal tibiofemoral axial rotation and provides proper patellar 
tracking throughout the entire range of flexion.5-19 The JOURNEY 
II Total Knee System has refined the design and expanded the 
system to include cruciate retaining, deep dished and constrained 
posterior stabilized options. 

Building upon this success, Smith & Nephew set out to develop  
a bi-cruciate retaining knee system, to no longer replicate, but 
retain all of the normal, healthy ligaments of the knee. The  
literature shows that the ACL is paramount in providing normal 
stability and kinematics throughout the range of motions, as  
well as proprioception.20,22,23
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Promising solution for dissatisfied patients
One potential option to address dissatisfied patients is bi-cruciate retaining 
(BCR) total knee arthroplasty (TKA). BCR TKA has been shown to be preferred 
by patients with bilateral TKA where one knee was a traditional CR or PS knee, 
and one knee was a BCR implant.20 BCR TKA also has motion patterns more 
similar to normal knee than most other TKA.21-23 Additionally, BCR TKA has 
had good long-term survivorship for implant designs that have low conformity 
tibial inserts and metal backed tibias.24,25 The literature is very clear that 
patients who maintain their ACL/PCL through a partial knee replacement have 
significantly higher satisfaction compared to TKA patients.58 Data suggests 
that maintaining the ACL might play a large role in partial knee replacement’s 
relative satisfaction compared to TKA. All of this data suggests that BCR 
TKA could help reduce the rate of dissatisfied patients. JOURNEY™ II XR™ was 
designed to capture the patient satisfaction of a partial knee replacement 
combined with the long term survivorship and principles of a TKA.

Limitations of bi-cruciate retaining TKA 
While there were some positive results with certain BCR designs, other designs  
had some clinical outcomes that led to limited use. A review of published  
literature, FDA Maude database*, and retrieved BCR tibial implants found the  
following areas of concern:

•	Flexion (< 105° or manipulations) was limited as a result of constrained  
	 polyethylene and non-anatomic implant designs24,26-30

•	Tibia fixation in all-poly and metal backed BCR implants as a result of  
	 polyethylene constraint and poor fixation features24,27,30-38

•	Tibia implant strength as a result of poor materials or fatigue strength design33,38,39

•	Tibia insert lock issues38 

•	Tibia polyethylene wear24,25,38

•	Difficult surgical technique also contributed to the limited use of BCR TKA  
	 and some of the poor clinical outcomes25,40-43

*	MDR data alone cannot be used to establish rates of events, evaluate a change in event rates over time or  
compare event rates between devices. The number of reports cannot be interpreted or used in isolation to reach 
conclusions about the existence, severity, or frequency of problems associated with devices. Confirming whether  
a device actually caused a specific event can be difficult based solely on information provided in a given report.
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JOURNEY™ II XR™ is designed 
to solve past BCR limitations  
Flexion and ligament balance
JOURNEY II XR is designed with asymmetric femoral condyles and low constraint 
concave medial and convex lateral articular surfaces to improve range of motion  
and aid ligament balancing. The normal knee has asymmetric femoral condyles  
which affect the tension profile of the medial and lateral soft tissues differently.  
By having asymmetric femoral condyles, JOURNEY II XR is designed to replicate  
the different medial and lateral tension profiles. Ligaments that attach anterior or 
posterior on the tibia like the cruciates are affected by anterior-posterior position  
of the femur, so low constraint articular surfaces with asymmetric medial and lateral 
profiles like the native anatomy encourage normal femur positions while allowing  
the ligaments to influence motion and avoid tightness that could restrict flexion.

Coronal conformity central and flat peripheral
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Anterior view of JOURNEY II XR during  
simulated flexion in LifeMOD/KneeSIM

Lateral view of JOURNEY II XR during  
simulated flexion in LifeMOD/KneeSIM

LifeMOD/KneeSIM computer 
knee simulator test rig 
positioned at full extension.

LifeMOD
Proprietary LifeMOD Design Software 

JOURNEY™ II XR™ was designed using state-of-the-art computer simulation 
techniques. Parametrically controlled CAD models were virtually implanted 
in an advanced computer knee simulator (proprietary, enhanced version  
of LifeMOD/KneeSIM™) and analyzed during multiple activities including 
deep knee bend and gait. Key measures including kinematics and 
ligament strain, which have been correlated to in vivo5 and in vitro data44 
respectively, were collected throughout flexion to characterize the 
biomechanic performance of the design under ideal conditions and  
when accounting for surgical variability.

90° 120° 155°60°
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Tibia fixation
The JOURNEY™ II XR™ tibial baseplate has the same proven asymmetric perimeter shape 
as the GENESIS™ II tibial baseplate,45,46 which is designed to have maximal coverage  
and bony support to reduce loosening. Additionally, it features an asymmetric notch, 
with a more anterior position medially to accept a well fixated ACL footprint. A keel  
was designed to match the anatomy of the anterior tibia with four corners intended  
to replicate the good tibia fixation of previous four peg tibia designs.47-49

Tibia implant strength
The JOURNEY II XR tibial baseplate has a continuous keel and optimized anterior  
bridge to provide strength, which was designed to eliminate historical design concerns 
related to anterior implant fractures.33,38,39 The keel is angled posteriorly to allow depth 
without hitting anterior cortex or undermining ACL. The anterior bridge is shaped  
to have a gradual transition from the increased thickness surrounding the cruciate  
notch. The baseplate material is forged Ti-6Al-4V, and has lower stiffness than CoCr,55  
reducing the risk of bone resorption from stress shielding. The resulting tibial baseplate 
design completed fatigue testing at 500 lbs for 10 million cycles with the loaded half  
of the baseplate unsupported according to ASTM F1800-07,56 which is more than  
double the 202 lbf minimum load recommended by ASTM F 2083-08 and 225 lbf 
documented in the Zimmer Biomet[tm] literature around VANGUARD XP’s fatigue strength.57

Tibia insert lock
The JOURNEY II XR tibial design has a fully captured lock detail with posterior and 
anterior locking interfaces. When tested to determine resistance to anterior lift-off 
caused by an extension moment, the lock for each insert is as strong as an entire  
TKA lock detail.50 A narrow pocket is located behind the anterior lock to increase 
flexibility during insertion, which allows the insert to be assembled to the baseplate  
with less force than reasonable thumb pressure.51,52 

Tibia polyethylene wear
The JOURNEY II XR tibial inserts are manufactured from highly cross-linked  
polyethylene (XLPE) which combines with the OXINIUM™ femoral to form VERILAST™ 
Technology a highly durable bearing combination shown to have low wear rates  
during simulator testing.53 JOURNEY II XR’s wear simulator results show no  
measurable wear at 5 million cycles.
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Surgical technique 
The JOURNEY™ II XR™ instruments have been designed to facilitate a surgical 
technique that continuously provides feedback for efficient, safe, and 
effective preservation of the anterior and posterior cruciate ligaments.

•	 Joint line preservation is important when retaining ligaments 	because 
the relationship between the articular surface and ligament attachments 
affects ligament function. The Distal Femoral Gage checks extension  
gap with posterior condyles in place to maintain tension on posterior 
capsule and avoid false sense of extension laxity. This allows for a  
precise approach to the distal femoral resection because immediate 
feedback is available to correct for an insufficient resection before any 
other steps are completed. Without this step, there is a higher risk of  
full extension tightness leading to tibia eminence fracture or joint line 
elevation leading to ligament imbalance throughout flexion.

•	Preserving the ACL attachment causes the tibial resections to determine 
tibial implant position, which adds complexity compared to a typical total 
knee arthroplasty. The added complexity is mitigated by instrumentation 
such that tibial alignment is performed in the following independent 
steps. These steps build upon each other eliminating the need to redo  
a step based on a subsequent step. 

Setting initial rotation
Use the Tibial Orientation Template to visualize and mark placement  
of the eminence resections.

•	Tibia cortical support and cruciate retention are top priorities.

•	The JOURNEY II XR implants have low constraint, so tibia baseplate 
rotation has little effect on knee function as defined by tibiofemoral 
kinematics, patella tracking, and ligament strain.

Initial tibial alignment and resection depth
Position the extramedullary alignment tube and set tibial varus-valgus by 
pinning the 3° Datum Block through the vertical slot, allowing for hands  
free refinement of depth, varus/valgus, slope and rotation adjustments  
in subsequent steps.

Use the Depth Stylus and check sagittal alignment before pinning through 
parallel holes in the Datum Block to set tibial depth and posterior slope.
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Surgical technique continued

Tibial resections and balancing
Mate the Tibial Orientation Stylus to the Datum Block and align the guide  
arms to the eminence marks, provisionally lock with the lever, and drill/pin 
through the eminence holes. The freedom to adjust Tibial Orientation Stylus 
placement eliminates the need for perfect Datum Block placement.

•	Medial and lateral tibial resections are completed using separate cutting 
guides locked to same platform which is intended to provide the accuracy  
of a single cutting guide with two smaller cutting guides.

•	The tibial eminence is protected during all tibial resections. Drills or pins  
are used in the Tibial Orientation Stylus to protect the resection corners.  
The Lateral Saw Capture has an integral pin providing protection and medial  
access to the saw. The Anterior Eminence Chisel locks into the Anterior 
Eminence Chisel Guide to block the saw during the anterior resection.

•	All trialing is completed with all resected bone space filled to avoid a false 
sense of laxity. Trialing with the full femoral trial and medial tibial trial prior to 
lateral tibial resection is a good predictor of balance after all resections are 
completed, so any recuts can be isolated to the more accessible medial tibia.

•	The anterior cut is last after all trialing is completed (ACL technique). This 
allows any tightness throughout the range of motion to be identified while 
the tibial eminence is still connected to the anterior cortex protecting the 
eminence connection to the tibia in case the ACL is too tight. If the anterior  
cut was not last, there would be a significantly higher chance of a bone  
bridge fracture.

•	A well balanced knee is important with a low constraint design that relies on 
the ligaments for stability, so JOURNEY™ II XR™ includes more options to enable 
balancing. During medial balancing if the knee is too tight with the minimum 
thickness or tighter in flexion than extension, insert trials simulating a depth 
and/or slope recut can be used to evaluate the effects of a recut before 
committing. If the knee is looser in flexion than extension at any point in the 
surgery, tibial trials corresponding to tibial implants can be used to effectively 
reduce the tibial slope. With these balancing options, the surgeon can have  
a higher level of confidence of achieving a balanced joint throughout the 
range of motion, and only require a recut when the joint is too tight.
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•	 If at any point during a JOURNEY™ II XR™ surgery the patient is no longer a 
good candidate for a bi-cruciate retaining knee, it is an easy intra-operative 
conversion to a JOURNEY II CR, DD, BCS or Constrained knee. JOURNEY II XR 
uses the same femoral trial, so with removal of the ACL and tibial eminence 
bone and preparation of the PS box for BCS or Constrained, the knee can  
be completed as usual.

JOURNEY II XR brings it 
all together
There is a clear need and demand to improve patient satisfaction in knees. 
While most companies are just now talking about this issue, Smith & Nephew 
has been addressing this need for over a decade by replacing and replicating 
the cruciates with JOURNEY’s physiological matching shapes.

JOURNEY II XR is the next step in this evolution to change the discussion 
around TKA, by retaining rather than substituting for the ACL and PCL. The 
ultimate design intent was to provide the patient satisfaction of a partial knee 
replacement with the long term survivorship and reproducible principles of 
TKA. JOURNEY II XR accomplishes this by eliminating the past concerns of 
BCR knee through:

•	 Retaining the ACL and replacing the affected joint with a completely 
asymmetric and anatomic joint designed to move like a normal knee.

•	 Advanced simulation and testing to create baseplate features that allow  
the optimal fixation and fatigue strength characteristics

•	 Advanced bearing materials of VERILAST™ Technology to provide  
lasting survivorship

•	 A robust technique to allow reproducible outcomes

JOURNEY II XR JOURNEY II CR JOURNEY II BCS

Kinematic
options

Constraint
options

JOURNEY                       
Early 
Intervention

 LEGION™
 Revision

Same implant

Same implant
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This design rationale is for informational and educational purposes only. It is not intended to serve as medical advice.  
It is the responsibility of treating physicians to determine and utilize the appropriate products and techniques according  
to their own clinical judgment for each of their patients. 

For detailed product information, including indications for use, contraindications, effects, precautions and warnings,  
please consult the product’s Instructions for Use (IFU) prior to use.
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